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In decaying two-dimensional Navier–Stokes turbulence, Batchelor’s similarity hypoth-
esis fails due to the existence of coherent vortices. However, it is shown that decay-
ing two-dimensional turbulence governed by the Charney–Hasegawa–Mima (CHM)
equation

∂

∂t
(∇2ϕ− λ2ϕ) + J(ϕ,∇2ϕ) = D,

where D is a damping, is described well by Batchelor’s similarity hypothesis for wave
numbers k � λ (the so-called AM regime). It is argued that CHM turbulence in the
AM regime is a more ‘ideal’ form of two-dimensional turbulence than is Navier–Stokes
turbulence itself.

1. Introduction
The most fascinating characteristic of the two-dimensional Navier–Stokes equations

is the existence of two quadratic inviscid invariants, the kinetic energy K and enstrophy
Z (half of the mean-square vorticity). The existence of these two invariants leads to
the dual cascade phenomenon: an inverse cascade of the kinetic energy and a direct
cascade of the enstrophy. In the limit of high Reynolds number, the dissipation of
kinetic energy vanishes, while that of enstrophy remains finite. Therefore, Batchelor
(1969) hypothesized that the kinetic energy K is the unique invariant of decaying
two-dimensional Navier–Stokes turbulence and that the temporal evolution of the
system depends only on K and time t. Based on dimensional arguments, he then
proposed the self-similar energy spectrum K(k), defined by

K = 1
2
〈v(x) · v(x)〉 =

∫ ∞
0

K(k) dk, (1.1)

as

K(k) = K3/2tF(kK1/2t), (1.2)

where v is the velocity and F is a universal function, and the angle brackets denote a
spatial average. From this follows the decay of enstrophy according to

Z = 1
2
〈ω(x)2〉 ∼ t−2, (1.3)

where ω is the vorticity.

† Permanent affiliation: Graduate School of Science and Technology, Kobe University, Kobe
657-8501, Japan.
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However, many direct numerical simulations of decaying two-dimensional Navier–
Stokes turbulence have not supported the enstrophy decay law (1.3) (McWilliams
1990; Carnevale et al. 1991; Weiss & McWilliams 1993; Chasnov 1997; Bracco et al.
2000b).† In decaying two-dimensional Navier–Stokes turbulence, long-lived coherent
vortices spontaneously emerge from random initial conditions. They evolve through
mutual advection, approximately described by Hamiltonian advection of point vortices
and the merging of like-signed vortices. Ultimately, they dominate the evolution of
the whole system (Fornberg 1977; Basdevant et al. 1981; McWilliams 1984; Benzi,
Patarnello & Santangelo 1987, 1988). For evolution from a narrow initial energy
spectrum, the time evolution of statistical quantities related to the coherent vortices,
such as the number of vortices, their mean radius, their mean circulation, etc., is
described well by the vortex scaling theory proposed by Carnevale et al. (1991). This
theory predicts the decay of enstrophy as

Z ∼ t−ξ/2, (1.4)

where ξ is the decay exponent of the number of vortices, and was estimated as
ξ ∼ 0.7–0.75 by numerical simulations and laboratory experiments (Benzi et al. 1992;
Carnevale et al. 1991, 1992; Weiss & McWilliams 1993; Cardoso, Marteau & Tabeling
1994; Siegel & Weiss 1997; Hansen, Marteau & Tabeling 1998; Sire & Chavanis 2000).
The scaling exponent ξ was phenomenologically estimated by Iwayama, Fujisaka &
Okamoto (1997) as ξ = 2/3 by taking into account the Hamiltonian dynamical
advection of vortices in the vortex scaling theory of Carnevale et al. (1991). They
pointed out that the vortex scaling theory is a mean field theory and that fluctuations
of vortex statistics cause the observed scaling exponent ξ to deviate from their estimate.
In fact, careful analysis of recent high-resolution direct numerical simulations of
decaying two-dimensional Navier–Stokes equation performed by Bracco et al. (2000b)
support their estimate. Thus, the decay of enstrophy is found to be much slower than
in Batchelor’s prediction (1.3). Moreover, there is a disagreement between the time
evolution of the spatial scale predicted by the vortex scaling theory and that obtained
from (1.2).

The extent of validity of Batchelor’s similarity hypothesis for two-dimensional
Navier–Stokes turbulence is comprehensively discussed by Bartello & Warn (1996).
They note that Batchelor’s hypothesis has other implications. Using the assumption
that the evolution of the system depends only on K and t, the one-point vorticity
probability density function (PDF) is predicted to have the self-similar form

pω(ω, t) ∼ tf(ωt), (1.5)

for some symmetric universal function f, and therefore the nth-order moments of the
vorticity evolve as

〈|ω|n〉 ∼ t−n. (1.6)

Direct numerical simulations of decaying two-dimensional Navier–Stokes turbulence
performed by Bartello & Warn (1996) showed that (1.6) is valid only for the low-
order moments (n 6 0.4) and breaks down for the high-order moments: decay rates
of high-order moments of the vorticity are constants independent of n, consistent

† Chasnov (1997) investigated the effect of initial Reynolds number R(0) on the decay of
enstrophy. He obtained the enstrophy decay law (1.3) only at a critical initial Reynolds number
R(0) = 15.73. However, the kinetic energy decays as K ∼ t−1 at this Reynolds number, in contrast
to Batchelor’s assumption K ∼ t0. Thus his result on the enstrophy decay law also does not support
Batchelor’s prediction.
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with the vortex scaling theory. This behaviour arises because the similarity form (1.5)
does not hold in the tails of the vorticity PDF, which are hyperbolic but truncated,
and which thus control the higher-order moments (including the enstrophy).

The existence of a second asymptotic invariant, ωext, which is characteristic of
the amplitude of the most intense vortices (and is therefore related to the end
point of the vorticity PDF), is responsible for the failure of Batchelor’s similarity
hypothesis. This invariant is inseparably related to the existence of coherent vortices
(McWilliams 1990). Therefore, the existence of coherent vortices is the origin of
the failure of Batchelor’s similarity hypothesis for decaying two-dimensional Navier–
Stokes turbulence.

This raises the question of whether there are any two-dimensional turbulent systems
for which Batchelor’s similarity hypothesis is applicable. In this article, we show
that two-dimensional turbulence governed by the Charney–Hasegawa–Mima (CHM)
equation in the AM regime k � λ – equivalently the quasi-geostrophic (QG) potential-
vorticity equation for an equivalent-barotropic fluid in the limit of small deformation
radius – is described well by Batchelor’s similarity hypothesis. This system is very
familiar to researchers in the fields of geophysical fluid dynamics and plasma physics.

Two-dimensional turbulence governed by the CHM equation has been actively
studied both theoretically and numerically, especially over the past decade (Hasegawa
& Mima 1978; Fyfe & Montgomery 1979; Yanase & Yamada 1984; Larichev
& McWilliams 1991; Ottaviani & Krommes 1992; Kukharkin, Orszag & Yakhot
1995; Watanabe, Fujisaka & Iwayama 1997; Watanabe, Iwayama & Fujisaka 1998;
Iwayama, Watanabe & Shepherd 2001). The equation describes the temporal evol-
ution of quasi-two-dimensional fluctuations of the electrostatic field on the plane
perpendicular to a strong magnetic field uniformly applied to a plasma (Hasegawa &
Mima 1978). It also describes the temporal evolution of QG motion in geophysical
fluids (Pedlosky 1987). The CHM equation in the strong turbulent state neglecting the
effects of waves, or equivalently the QG potential vorticity equation on the f-plane,
can be written as follows:

Dq

Dt
≡ ∂q

∂t
+ J(ϕ, q) = D, (1.7a)

q = ω − λ2ϕ, ω = ∇2ϕ, (1.7b, c)

where all quantities are made non-dimensional, J(·, ·) is the two-dimensional Jacobian
operator, ∇2 the two-dimensional Laplacian, ϕ(x, y) the electrostatic potential for the
plasma case or the variable part of the free surface of the fluid for the geophysical case,
and the right-hand side of (1.7a) is a damping term. The constant λ is either the ratio
of the horizontal length scale of interest L to the ion Larmor radius in the plasma
case, or the ratio of L to the Rossby deformation radius in the geophysical case.
Equation (1.7) contains two characteristic regimes. The first is the two-dimensional
Navier–Stokes regime that is obtained when λ → 0. The governing equation in this
regime is the well-known two-dimensional vorticity equation,

∂ω

∂t
+ J(ϕ,ω) = D. (1.8)

The other regime is obtained asymptotically for λ → ∞. The governing equation is
then

λ2 ∂ϕ

∂t
+ J(ω,ϕ) = −D. (1.9)
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Since (1.9) has been called the asymptotic model (AM) (Larichev & McWilliams 1991),
we shall call this regime the AM regime. There are resemblances between turbulent
properties of (1.8) and those of (1.7). Equation (1.7) also has two quadratic inviscid
invariants: the total energy E = −〈ϕq〉/2 and the potential enstrophy Q = 〈ωq〉/2.
Moreover, a dual cascade (forward cascade of potential enstrophy and inverse cascade
of total energy) is possible independent of the value of λ by Fjørtoft’s theorem
(Fjørtoft 1953), since the total energy spectrum E(k) and the potential enstrophy
spectrum Q(k), defined by E =

∫ ∞
0
E(k) dk and Q =

∫ ∞
0
Q(k) dk, respectively, are

related by Q(k) = k2E(k).
Recently, Watanabe et al. (1998) discussed scaling laws for the temporal evolution

of a characteristic wavenumber k̄ = {∫ ∞
0
kE(k) dk}/E and of the energy spectral

density at the scale k̄ for decaying CHM turbulence in the AM regime. Their
discussion is similar to Batchelor’s argument for decaying two-dimensional Navier–
Stokes turbulence. That is, provided the energy spectrum evolves in a self-similar way
and the total energy E is an invariant in the limit of high Reynolds number, the
energy spectrum can be expressed as

E(k) = λ−3/4E 9/8t1/4G(kλ−3/4E 1/8t1/4), (1.10)

where G is a function of universal form (Watanabe et al. 1998). The temporal evolution
of the characteristic wavenumber k̄ and the energy spectral density at the scale k̄ are
then

k̄ ∼ t−1/4 and E(k̄) ∼ t1/4. (1.11a, b)

These results were confirmed by direct numerical simulation of (1.7) evolving from a
narrow-band initial energy spectrum. Moreover, self-similarity of the energy spectrum
was satisfied well. Furthermore, Watanabe et al. (1998) discussed the vortex scaling
theory of Carnevale et al. (1991) as revised by Iwayama et al. (1997), and derived the
evolution of the mean vortex radius Ra and the mean distance between vortices la as

Ra ∼ tξ/2 and la ∼ tξ/2 with ξ = 1
2
. (1.12a, b, c)

It is possible to consider the length scale corresponding either to the peak of the
energy spectrum or to the energy-averaged wavenumber k̄ as the mean distance
between vortices, because the energy spectrum of decaying CHM turbulence has a
single sharp peak. As a result, the vortex scaling theory (1.12b, c) is consistent with
Batchelor’s arguments (1.11a), in contrast to the case of two-dimensional Navier–
Stokes turbulence. Therefore, the results of Watanabe et al. (1998) suggest that CHM
turbulence in the AM regime is a candidate system for which Batchelor’s similarity
hypothesis may be applicable.

In this paper, we comprehensively examine the validity of Batchelor’s similarity
hypothesis for CHM turbulence in order to confirm the above conjecture. For this
purpose, we follow the study of Bartello & Warn (1996). That is, the self-similarity
of the one-point PDFs of various physical quantities – the stream function ϕ, the
potential vorticity q, the two components of the velocity u and v, and the vorticity
ω – and the time evolution of the nth-order moments of these quantities, are examined.

This paper is organized as follows. In § 2, we discuss the implications of Batchelor’s
similarity hypothesis for CHM turbulence in the AM regime. The self-similar forms
of the various PDFs and the temporal scaling laws for the nth-order moments of ϕ, q,
u, v and ω are derived. In § 3, we present results from direct numerical simulations of
the CHM equation. The role of coherent vortices vis-à-vis the success of Batchelor’s
similarity hypothesis is discussed in the concluding § 4.
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2. Batchelor’s similarity hypothesis for CHM turbulence in the AM regime
In this section, we derive the similarity form of one-point PDFs of the stream

function ϕ, the potential vorticity q, the two components of the velocity u = −∂yϕ
and v = ∂xϕ, and the vorticity ω for CHM turbulence in the AM regime. The
temporal exponents of the nth-order moments of these quantities are also derived.

The scale transformations (x, y) → a(x, y) and t → bt leave equation (1.9) with
D = 0 unchanged provided that ϕ → λ2a4b−1ϕ. Therefore the stream function ϕ in
the AM regime is scaled as

ϕ ∼ λ2L4T−1, (2.1a)

where L and T are characteristic scales of length and time, respectively. Since in the
AM regime the energy is approximately expressed in terms of ϕ according to

E ≈ 1
2
λ2〈ϕ2〉, (2.1b)

the length scale L is expressed in terms of E , λ and T as

L ∼ λ−3/4E 1/8T 1/4. (2.1c)

Using relations (2.1) and E(k) ∼ LE , one obtains the similarity form of the energy
spectrum (1.10). The stream function ϕ, the potential vorticity q, the two components
of the velocity u and v, and the vorticity ω are scaled in terms of E , T and λ as
follows:

ϕ ∼ λ−1E 1/2, (2.2a)

q ≈ −λ2ϕ ∼ λE 1/2, (2.2b)

(u, v) ∼ L−1ϕ ∼ λ−1/4E 3/8T−1/4, (2.2c)

ω ∼ L−2ϕ ∼ λ1/2E 1/4T−1/2. (2.2d)

Therefore, the one-point PDFs of ϕ, q, u, v and ω are predicted to have the self-similar
forms

pϕ(ϕ, t) = λE−1/2gϕ(ϕλE−1/2), (2.3a)

pq(q, t) = λ−1E−1/2gq(qλ
−1E−1/2), (2.3b)

pu(u, t) = λ1/4E−3/8t1/4gu(uλ
1/4E−3/8t1/4), (2.3c)

pω(ω, t) = λ−1/2E−1/4t1/2gω(ωλ−1/2E−1/4t1/2), (2.3d)

for symmetric universal functions gϕ, gq , gu and gω . The PDF of v is omitted, because
the assumption of isotropy of the velocity field yields (2.3c) with v in place of u. The
nth-order moments of ϕ, q, u, v and ω are then obtained from (2.3) as follows under
the assumption of isotropy of the velocity field:

〈|ϕ|n〉 ∼ λ−nE n/2, (2.4a)

〈|q|n〉 ∼ λnE n/2, (2.4b)

〈|u|n〉 = 〈|v|n〉 ∼ λ−n/4E 3n/8t−n/4, (2.4c)

〈|ω|n〉 ∼ λn/2E n/4t−n/2. (2.4d)

In order to examine the validity of Batchelor’s similarity hypothesis for CHM turbu-
lence in the AM regime, the validity of the self-similar forms of the PDFs (2.3) and
the temporal dependence of the nth-order moments (2.4) will be checked by direct
numerical simulation of (1.7).
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We note that λ in the above discussion is interpreted as L−1 in the Navier–Stokes
regime. In that case, the above expressions yield Batchelor’s similarity spectrum (1.2)
and the vorticity and velocity PDFs examined by Bartello & Warn (1996).

3. Numerical simulations
3.1. Description of simulations

In this section, we report direct numerical simulations of decaying turbulence governed
by (1.7) with the hyperviscosity term D = −ν2∇4q. Also solved is the passive-scalar
advection equation,

Dϑ

Dt
=
∂ϑ

∂t
+ J(ϕ, ϑ) = −κ2∇4ϑ, (3.1)

for the purpose of comparison between the potential vorticity q and the passive
scalar ϑ. We note that a damping term of the form D = (−1)n−1νn∇2nω has been
used in many previous works (e.g. Larichev & McWilliams 1991; Kukharkin et al.
1995; Watanabe et al. 1998; Bracco et al. 2000a; Iwayama et al. 2001). However,
we adopt the damping term stated above, so that the damping term in the passive-
scalar equation (3.1) has the same form as that in the CHM equation (1.7), since
q is an advected quantity. The pseudospectral method is used in double precision
arithmetic and at resolutions of 2562 and 5122, which are the numbers of grid points
in the computational domain which has dimensions of 2π× 2π. The aliasing error is
suppressed by the 2/3 rule. We set the damping coefficient ν2 = κ2 = 3.0×10−8 for the
low-resolution simulation and ν2 = κ2 = 5.0×10−9 for the high-resolution simulation.
The parameter λ is set at λ = 50 for the low-resolution simulation and λ = 100 for
the high-resolution simulation. Initial conditions are specified by generating uniform
random numbers with a value between 0 and 2π for the phase of each Fourier
component of ϕ. The initial value of the kinetic energy per unit area is normalized
to be 0.5. Two initial forms of the energy spectrum, specified by

E(k) ∝ k6

(k + 60)18
(3.2a)

or by

E(k) ∝ k30

(k + 30)60
, (3.2b)

are considered. Both initial spectra have a sharp peak at k = 30. The former is
frequently used in decaying two-dimensional Navier–Stokes turbulence as a narrow-
band spectrum (McWilliams 1990; Weiss & McWilliams 1993; Bracco et al. 2000a, b).
The latter is similar to the initial spectra used in Larichev & McWilliams (1991),
Watanabe et al. (1998), and Iwayama et al. (2001). We set the initial value of
the passive-scalar field to have the same spectrum as q but with a random phase
scrambling so that q and ϑ are initially uncorrelated. Time integration is performed
by the Adams–Bashforth scheme with time increments of ∆t = 2.5 × 10−3 for the
low-resolution simulation and ∆t = 1.25 × 10−3 for the high-resolution simulation.
We have checked that the following results are independent of the dissipation term
within reasonable limits on ν2, of the resolution, and of the form of the initial energy
spectrum. In what follows we present the results of the high-resolution simulation
that have evolved from the spectrum (3.2a).
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Figure 1. Time evolution of the non-dimensional time τ(t) from (3.3). The dashed line corresponds
to the ln t evolution. The dots indicate the sampling time at which the energy spectra and various
PDFs are evaluated.

3.2. General characterization of the simulation

Numerical simulations are performed up to t = 200. This time corresponds to a
non-dimensional time of approximately τ = 80, where τ equals the number of eddy
turnover times and is defined by Larichev & McWillams (1991) as

τ(t) =

∫ t

0

[2Z(t′)]1/2

1 + (λ/k̄K)2
dt′, k̄K ≡

∫ ∞
0

kK(k) dk

K
. (3.3)

When λ = 0, this definition is equivalent to that commonly used in studies of two-
dimensional Navier–Stokes turbulence (e.g. Bartello & Warn 1996; Chasnov 1997).
The temporal evolution of the non-dimensional time τ(t) is found to obey τ(t) ∼ ln t
(figure 1), which is consistent with the simulations of Larichev & McWilliams (1991)
and Iwayama et al. (2001). The time evolution of τ(t) can also be derived from
Batchelor’s similarity argument. Using (1.11a) and (2.4d) with n = 2, the integrand of
τ(t) is scaled in the AM regime as

2Z(t′)1/2

1 + (λ/k̄K)2
≈ 2

λ2
k̄2
KZ

1/2 ∼ (t′)−1. (3.4)

Thus, τ(t) ∼ ln t is obtained theoretically from Batchelor’s similarity argument.

We define the dissipation wavenumber as kd ≡ η1/12ν
−1/4
2 as in Ohkitani (1991),

where η is the potential enstrophy dissipation rate. The dissipation wavenumber kd
algebraically decreases with time from kd ' 234.8 at t = 0 to kd ' 117.7 at t = 200 (the
figure is omitted). This indicates that the dissipation wavenumber range is sufficiently
confined within the high-wavenumber range, due to the adoption of the hyperviscosity
term in the evolution equations.

The potential vorticity field q at t = 196 (τ = 80.0) is shown in figure 2(a).
For comparison, the vorticity field ω for decaying two-dimensional Navier–Stokes
turbulence (λ = 0) at t = 4 (τ = 84.8) is shown in figure 2(b). As seen from the figure,
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Figure 2. (a) Potential vorticity q at t = 196 (τ = 80.0) for the CHM case and (b) vorticity field ω
at t = 4 (τ = 84.8) for the Navier–Stokes case (λ = 0). The negative contours are dashed and the
zero contour is deleted. The contour intervals are 100 and 15 for (a) and (b), respectively.
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Figure 3. Time evolution of half the mean-squared potential vorticity Eq , the potential vorticity
extremum qext, the potential enstrophy Q , the passive scalar variance Eϑ, the energy-averaged
wavenumber k̄, and the total energy E .

ω for the Navier–Stokes case has filamentary structure, but q for the CHM case does
not, although both fields are governed by the same advection equation.

The evolution of the total energy E , the potential enstrophy Q , the energy-averaged
wavenumber k̄, the passive-scalar variance

Eϑ = 1
2
〈ϑ2〉, (3.5)

and half the mean-squared potential vorticity

Eq = 1
2
〈q2〉, (3.6)

are shown in figure 3. The decay of all these quantities is algebraic in time. The total
energy E is not exactly conserved due to the finiteness of the Reynolds number in this
simulation: it decreases from an initial value of 3.19 to a final value of 2.02. However,
we can correct for the finiteness of the Reynolds number in the following results by
using the instantaneous value of total energy for E in the similarity variables. The
characteristic wavenumber k̄ decreases algebraically from an initial value of 41.9 to
12.2. Thus, the energy-containing scale of this system belongs to the AM regime. Eq
behaves similarly to E , because Eq = λ2E + Q ≈ λ2E for k̄ � λ. The passive-scalar
variance Eϑ decays somewhat faster than the downward cascading quantity Q . In
particular, Eϑ decays while Eq does not, suggesting that in spite of the form of
(1.7a), q does not filament and develop small scales as it does in two-dimensional
Navier–Stokes turbulence. Indeed, this feature can be seen from figure 2.

In order to examine the validity of the self-similar energy spectrum (1.10), the energy
spectra at times t = 16, 32, 60, 110 and 196 are written in terms of similarity variables
using instantaneous total energy (figure 4). These times correspond to τ = 39.9, 50.1,
60.0, 70.0 and 80.0, respectively, i.e. they are approximately equally spaced in terms of
τ. It is clear that the energy spectra are collapsing onto a universal functional form
with time. Thus Batchelor’s similarity argument applied to the energy spectrum of
CHM turbulence in the AM regime is verified. The slight deviation from a universal
form at the high-wavenumber end of the spectrum might be due to the finite value
of λ used in the simulation.
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ϕ q u v ω

2.69 2.70 3.07 3.10 3.89

Table 1. The flatness of various PDFs at t = 196.
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Figure 4. Energy spectra at t = 16, 32, 60, 110 and 196 in terms of similarity variables.

3.3. One-point probability densities for various quantities

In this subsection, further tests of Batchelor’s similarity hypothesis are performed by
examining the PDFs of ϕ, q, u, v and ω. Each PDF px(x, t) is obtained from the
simulation data by counting the number of points N(x) in each field corresponding
to the value of x in the interval (x, x + δx) and then normalizing N(x) by the total
number of grid points. The interval xmin < x < xmax is divided into 400 bins.

The PDFs of ϕ, q, u, v and ω in terms of similarity variables using instantaneous
total energy are shown in figure 5 at the same instants of time as the spectra shown in
figure 4. For comparison, the vorticity PDFs for decaying two-dimensional Navier–
Stokes turbulence (λ = 0) are also shown in panel (f). We conclude that all PDFs for
CHM turbulence are collapsing onto universal functional forms. In order to specify
the various PDFs quantitatively, their flatness is evaluated at t = 196 (table 1). Since
the potential vorticity can be approximately expressed as q ≈ −λ2ϕ in the AM regime,
we anticipate that gq(λE−1/2q) ≈ gϕ(−λ−1E−1/2ϕ). In fact, this relation is satisfied well.
The slight deviations of the potential vorticity PDF from the stream function PDF
are due to the finite value of λ used in the simulation. The PDFs of u and v are nearly
equivalent so the velocity field is statistically isotropic. Moreover, the flatness of the
PDFs of u and of v is approximately 3. That is, the velocity PDFs are Gaussian.
Recently, Bracco et al. (2000a) showed from a direct numerical simulation of the
CHM equation that the velocity PDF is non-Gaussian. However, the value of λ used
in their study was λ = 5, so their result is likely to be in the Navier–Stokes rather
than the AM regime. The vorticity PDF is significantly non-Gaussian, consistent with
the results of Larichev & McWilliams (1991). The functional form of the vorticity
PDF for the CHM case (figure 5e) is very different from that for the Navier–Stokes



An ‘ideal’ form of decaying two-dimensional turbulence 193

10–4

ì E–1/2æ

ì–1
E

1/
2
p æ

(æ
, t

)

–6 –4 –2 0 2 4 6

10–3

10–2

10–1

100

10–4

–6 –4 –2 0 2 4 6

10–3

10–2

10–1

100

10–4

–6 –4 –2 0 2 4 6

10–3

10–2

10–1

100

10–4

–6 –4 –2 0 2 4 6

10–3

10–2

10–1

100

10–7

–2 0 2–1 1

10–6

10–5

10–4

10–3

10–2

10–7

–10

10–6

10–5

10–4

10–3

10–2

–5 0
(× 102)

5
(× 103)

(a) (b)

(c) (d )

(e) ( f )

ìE
1/

2
p q

(q
, t

)

ì–1
/4

E
3/

8
t–1

/4
p u 

(u
, t

)

ì–1
/4

E
3/

8
t–1

/4
p v

(v
, t

)

ì1/
2
E

1/
4
t–1

/2
p x

(x
, t

)

t–1
p x

(x
, t

)
ì–1E–1/2q

ì1/4E–3/8t1/4 u ì1/4E–3/8t1/4v

ì–1/2E–1/4t1/2 x x t

10–1

Figure 5. PDFs of (a) ϕ, (b) q, (c) u, (d ) v, and (e) ω at t = 16, 32, 60, 110, and 196 in terms
of similarity variables. (f) The vorticity PDF in terms of similarity variables for the Navier–Stokes
case (λ = 0) at t = 1.0, 2.0, 4.0 and 8.0. These times correspond to τ = 35.5, 56.5, 84.8 and 126.6,
respectively. The scaled PDF broadens with time in the Navier–Stokes case.
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Figure 6. Temporal evolution of nth-order moments for (a) ϕ, (b) q, (c) U ≡ √u2 + v2 and (d ) ω
for n = −1/3, 1/3, 2/3, 1, 3/2, 2, 3, 4, 6 and 8, normalized at t = 0.

case (figure 5f ). In particular, in the latter case the tails continue to extend outwards
with increasing t, as emphasized by Bartello & Warn (1996).

The nth-order moments 〈|ϕ|n〉, 〈|q|n〉, 〈|U|n〉 and 〈|ω|n〉 are analysed from n = −1/3

up to n = 8 (figure 6), where U =
√
u2 + v2. Since the velocity field is isotropic, we

analyse 〈|U|n〉 instead of examining 〈|u|n〉 and 〈|v|n〉 separately. As shown in figure 6,
the temporal development of all moments is algebraic. Thus, the slopes of the moments
are evaluated by the least-squares method over the range 20 6 t 6 200 (figure 7).
Also shown are the theoretical results from Batchelor’s similarity hypothesis (2.4).
We note that the effect of a finite Reynolds number on the slope of the moments,
that is, the effect of the slight decrease in energy on the exponents, is eliminated
by accounting for the energy dependence on the moments in (2.4). Thus figure 7
indicates the intrinsic temporal exponents of the moments. As expected from figure 5,
the numerical results agree well with Batchelor’s similarity hypothesis for all orders
of moments.

4. Summary and discussion
In decaying two-dimensional Navier–Stokes turbulence, Batchelor’s similarity hy-

pothesis describes only the low-order statistics of the vorticity field and breaks down
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Figure 7. Slopes of the moments over the range 20 6 t 6 200. The solid line, the dash-dot line
and the dashed line correspond to predictions from Batchelor’s similarity hypothesis (2.4a) or
equivalently (2.4b), (2.4c) and (2.4d), respectively. The crosses indicate the slopes of 〈|ϕ|n〉, the circles
〈|q|n〉, the squares 〈|U|n〉 and the triangles 〈|ω|n〉.

for the high-order statistics due to the existence of coherent vortices (Bartello & Warn
1996). However, we have shown in this paper that Batchelor’s similarity hypothesis
works well for decaying CHM turbulence in the AM regime. We derived self-similar
forms of the energy spectrum and of the one-point PDFs of various quantities – the
stream function, the potential vorticity, the two compoments of velocity, and the
vorticity – as well as the time evolution of the nth-order moments of these quantities.
We also performed direct numerical simlulations of (1.7) to check the validity of the
theoretical estimates. The results of the simulations coincided with the theoretical
results. Therefore we conclude that CHM turbulence in the AM regime is a more
‘ideal’ form of two-dimensional turbulence than is Navier–Stokes turbulence itself.

Larichev & McWilliams (1991) showed that coherent vortices exist even in CHM
turbulence in the AM regime. Moreover, Watanabe et al. (1998) demonstrated that
a vortex scaling theory like that of Carnevale et al. (1991) for two-dimensional
Navier–Stokes turbulence successfully described the vortex statistics of CHM tur-
bulence in the AM regime. These facts would appear to contradict the success of
Batchelor’s similarity hypothesis discussed above, because the existence of coherent
vortices is responsible for the failure of Batchelor’s similarity hypothesis in decaying
two-dimensional Navier–Stokes turbulence (Bartello & Warn 1996). Indeed, there
are contradictions between the results from Batchelor’s similarity hypothesis and the
vortex scaling theory in the Navier–Stokes case. Bartello & Warn (1996) generalized
Batchelor’s similarity theory by taking into account the second asymptotic invari-
ant ωext, which is characteristic of the amplitude of the most intense vortices, and
successfully described the similarity evolution of the energy spectrum.

However, a consistent description of both vortex scaling theory and Batchelor’s
similarity theory in the case of CHM turbulence in the AM regime is possible, as
follows. Although the potential vorticity of the core of the most intense vortex, qext,
is an approximate invariant (figure 3), the total energy E and qext cannot be treated
as independent invariants. This is because the self-similarity of the potential vorticity
PDF (figure 5b) means that qext is related to Eq , while Eq reduces to the total energy,
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Eq = 〈|q|2〉/2 ≈ λ2E , in the AM regime, as mentioned in § 3.2. Therefore, there are
no additional invariants beyond the total energy E for CHM turbulence in the AM
regime. As a result, it is possible to reconcile Batchelor’s similarity theory with the
vortex scaling theory.

The self-similarity of the potential vorticity PDF and, in particular, its well-behaved
tails, raises the question of whether the vortices in the AM regime of CHM turbulence
really are ‘coherent’. Certainly there is nothing reminiscent of the strong intermit-
tency of the vorticity field exhibited in two-dimensional Navier–Stokes turbulence;
the vortices of the AM regime of CHM turbulence are more like a quasi-crystal
(Kukharkin et al. 1995), rather than a collection of independent, individual entities.
It is the strong intermittency of the vorticity field in two-dimensional Navier–Stokes
turbulence, reflected in the non-self-similar tails of the vorticity PDF, that leads to the
deviations from Batchelor’s similarity theory identified by Bartello & Warn (1996).
In contrast, the AM regime of CHM turbulence obeys Batchelor’s similarity theory
because of the absence of intermittency. Although vortices exist, they are not partic-
ularly special objects and presumably their evolution cannot be understood in terms
of the dynamics of point vortices, as in two-dimensional Navier–Stokes turbulence.

A natural question is why it is that CHM turbulence in the AM regime exhibits no
intermittency. This paper does not attempt to address this question. However, it may
be noted that two-dimensional Navier–Stokes turbulence (1.8) involves advection of
∇2ϕ by ϕ, i.e. by the larger scales of motion, and this leads to the long-range, persistent
straining that is reflected in filamentary structures and non-Gaussian statistics (long
tails). In contrast, CHM turbulence in the AM regime (1.9) involves advection of ϕ
by ∇2ϕ, i.e. by the smaller scales of motion, and this may be expected to lead to more
‘random walk’ behaviour and to suppress intermittency. The contrast between these
two behaviours is evident in the physical-space fields shown in figure 2. However,
these ideas remain at this stage purely speculative.

We have shown that Batchelor’s similarity hypothesis describes well not only the
lower order but also the higher order statistics of CHM turbulence in the AM regime.
This similarity behaviour cannot be modelled by a closure model, because it is valid
only at the second-order moment. However, the lack of intermittency evident in the
PDFs suggests that a closure model stands a much better chance of representing
the second-order statistics of CHM turbulence in the AM regime than those of two-
dimensional Navier–Stokes turbulence, where the failures have been well documented
(e.g. Herring & McWilliams 1985). To address this question it would be interesting
to compare results of direct numerical simulations with those of closure calculations.
This point should be the subject of a future study.

It is natural to ask whether there are other decaying two-dimensional turbulent
systems for which Batchelor’s similarity hypothesis is applicable. Pierrehumbert, Held
& Swanson (1994) proposed a family of models of two-dimensional turbulence,
so-called α-turbulence, governed by

∂q

∂t
+ J(ϕ, q) = 0, (4.1a)

ϕ̂(k) = −|k|−αq̂(k), (4.1b)

where ϕ̂(k) and q̂(k) are the Fourier coefficients of ϕ and q with wavenumber k,
respectively. This equation reduces to the vorticity equation of the inviscid Navier–
Stokes system for α = 2, and to the surface quasi-geostrophic equation for α = 1.
The CHM equation in the AM regime corresponds to α = −2. Recently, α-turbulence
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has attracted much research interest and it is under active study (Held et al. 1995;
Ohkitani & Yamada 1997; Schorghofer 2000a, b). However, the previous studies on
α-turbulence have studied only the positive-α regime. The present study suggests the
need to study the negative-α regime.
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